Requirement for C-terminal end of fibroblast growth factor receptor 4 in translocation of acidic fibroblast growth factor to cytosol and nucleus.
نویسندگان
چکیده
The ability of COS cells to bind and internalise acidic fibroblast growth factor (aFGF) was studied after transient transfection of the cells with wild-type and mutated fibroblast growth factor receptor 4. In one case the tyrosine kinase of the receptor was inactivated by a point mutation in the active site, whereas in other cases parts of the receptor were deleted to remove various parts of the cytoplasmic domain. In all cases the receptors were expressed at the cell surface at a high level and the cells bound labelled growth factor efficiently and internalised it by endocytosis. Translocation of externally added aFGF across cellular membranes to reach the cytosol and nucleus was measured as transport of labelled growth factor to the nuclear fraction obtained by centrifugation, by farnesylation of growth factor modified to carry a CAAX motif, and by phosphorylation of the growth factor at a site specific for protein kinase C. Whereas both full-length receptors (with and without an active kinase domain) facilitated translocation of the growth factor to the cytosol and nucleus, as assessed by these methods, the mutants of the receptor where the C terminus was deleted, were unable to do so. In contrast, a receptor containing only the 57 most C-terminal amino acids of the cytoplasmic domain in addition to the juxtamembrane, transmembrane and extracellular domains, was in fact able to mediate translocation of aFGF to the cytosol. These data indicate that information contained in the C terminus of the receptor is required for translocation.
منابع مشابه
Phosphorylation of fibroblast growth factor (FGF) receptor 1 at Ser777 by p38 mitogen-activated protein kinase regulates translocation of exogenous FGF1 to the cytosol and nucleus.
Exogenous fibroblast growth factor 1 (FGF1) signals through activation of transmembrane FGF receptors (FGFRs) but may also regulate cellular processes after translocation to the cytosol and nucleus of target cells. Translocation of FGF1 occurs across the limiting membrane of intracellular vesicles and is a regulated process that depends on the C-terminal tail of the FGFR. Here, we report that t...
متن کاملStimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization.
U2OS Dr1 cells, originating from a human osteosarcoma, are resistant to the intracellular action of diphtheria toxin but contain toxin receptors on their surfaces. These cells do not have detectable amounts of fibroblast growth factor receptors. When these cells were transfected with fibroblast growth factor receptor 4, the addition of acidic fibroblast growth factor to the medium induced tyros...
متن کاملDetermination of Vascular Endothelial- and Fibroblast-Growth Factor Receptors in a Mouse Fibrosarcoma Tumor Model Following Photodynamic Therapy
The role of angiogenic molecules, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) in tumor angiogenesis was well confirmed. Photodynamic therapy (PDT) action is, to very high degree, based on tumor vasculature damage. Therefore, it seemed to be important to evaluate growth factor receptors after PDT. The extent of receptor expression was studied by immuno-histo...
متن کاملDifferent abilities of the four FGFRs to mediate FGF-1 translocation are linked to differences in the receptor C-terminal tail.
Members of the fibroblast growth factor family bind to one or more of the four closely related membrane-spanning FGF receptors. In addition to signaling through the receptors, exogenous FGF-1 and FGF-2 are endocytosed and translocated to the cytosol and nucleus where they stimulate RNA and DNA synthesis. Here we have studied the ability of the four FGF receptors to facilitate translocation of e...
متن کاملFGF-1 and FGF-2 require the cytosolic chaperone Hsp90 for translocation into the cytosol and the cell nucleus.
Similarly to many protein toxins, the growth factors fibroblast growth factor 1 (FGF-1) and FGF-2 translocate from endosomes into the cytosol. It was recently found that certain toxins are dependent on cytosolic Hsp90 for efficient translocation across the endosomal membrane. We therefore investigated the requirement for Hsp90 in FGF translocation. We found that low concentrations of the specif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 113 ( Pt 10) شماره
صفحات -
تاریخ انتشار 2000